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1. Introduction
The inertial properties∗ of regularly shaped bodies are required for studies in rigid-
body dynamics. Tabulated lists of these properties for a variety of different geome-
tries exist in the textbook literature.1 However, the ballistic ogive, often appearing
at the front of a cylindrical projectile, is one such shape that appears to have eluded
study, in this regard. In this note, we remedy that deficiency.

2. The Ballistic Ogive
A ballistic ogive is a solid of revolution whose rear surface is planar and whose front
surface is formed by rotating a convex circular arc about the symmetry axis. The
ballistic ogive may be characterized, in general, by three dimensions: the caliber
radius head (CRH), the ballistic length (BL), and the projectile diameter D.2,3

The CRH is a nondimensional number defined as

CRH = Rogive

D
,

where Rogive is the radius of curvature of the circular arc defining the ogival head.
The BL of a projectile is the length of its ogival head measured along the projectile’s
symmetry axis. An ogive schematic is given, for the general case, in Fig. 1.

D

BL

P

CRH · D

Fig. 1 The parameters describing an ogive: CRH, BL, and D. In the general case, the center of
radius P may lie below the basal plane, in which case the body is referred to as a secant ogive.

∗By inertial properties, we refer to the volume (or mass), center of gravity (CG), and the three
respective moments of inertia (though, in the z-axisymmetric case, Ixx = Iyy).
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However, we begin this note by limiting our consideration to the tangent ogive, for
which the rearward end of the ogive blends smoothly into the shank of the cylindri-
cal projectile that follows, without a slope dislocation known as a “shoulder”. Said
differently, a tangent ogive is one where the center of the arc that traces the ogival
nose (denoted as P in Fig. 1) lies in the basal plane of the ogive (the plane z = 0,
as in Fig. 2). Such a condition ensures a continuous slope at the point where the
ogive joins the cylindrical body that follows. We see in the following section that,
for tangent ogives, BLtan is not a free parameter, but may be expressed in terms of
the CRH and projectile caliber.

R
O

z

x
P

fR

z = BLtan = λR

Fig. 2 The parameters used in this report to describe a tangent ogive: f and R. For a tangent
ogive, the center of radius P must lie in the plane z = 0.

3. Parameters Governing the Geometry of the Tangent Ogive
It is convenient to introduce the parameter f , defining the ogival-head radius of
curvature (see Fig. 2), nondimensionalized by the projectile radius R:

f =
Rogive

R
.

In Fig. 2, the ballistic length BLtan for a tangent ogive, nondimensionalized by the
projectile radius R, is designated as λ. Consider sweeping the fR ray, anchored at
P, counterclockwise until it connects to the tip of the ogive. In this case, a right
triangle is formed by the origin O, center-of-arc P, and the ogive tip (side lengths

2
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( f − 1)R, fR, and λR). Application of the Pythagorean Theorem leads to

f 2 = ( f − 1)2 + λ2 ,

through which λ may be solved:

λ =
BLtan

R
=

√
2 f − 1 . (1)

Equation 1 reveals that, for tangent ogives, the nondimensional ballistic length λ

is not a free parameter, but is constrained by the value of f . For tangent ogives,
the CRH, BLtan, and the caliber may all be expressed solely in terms of the two
parameters, f and R:

D =

BLtan =

CRH =

2R

√
2 f − 1R

f /2

.

As a point of interest, there exists only one nondimensional, tangent-ogival geom-
etry for which the nondimensional ballistic length λ equals the CRH, namely, the
case where CRH = 2 +

√
3 ≈ 3.732. In contrast, a value of CRH = 0.5 corresponds

to a hemispherical ogive. In all cases, f ≥ 1 is a geometrical constraint.

4. Inertial Properties of the Tangent Ogive
Using direct integration with standard tables,4 the inertial properties of ogives may
be ascertained. Because the integration process is tedious, only the final nondimen-
sional results are presented here. However, Appendix A may be consulted for the
particulars of the various integrations.

The inertial properties of the tangent ogive expressed are normalized by way of
powers of R and expressed in terms of f and λ. Note, however, that in light of Eq. 1,
λ itself is defined in terms of f . Therefore, the mere specification of the nondimen-
sional f term (and material density ρ) uniquely defines the nondimensional inertial
properties of the tangent ogive.

The ogival volume V may be calculated as

V
R3 = π

((
f 2 −

1
3
λ2

)
λ − f 2( f − 1) sin−1

( λ
f

))
. (2)

3
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The mass of the ogive, m, may be expressed in terms of Eq. 2 as

m
R3 = ρ

V
R3 ,

where ρ is the density of the ogive material.

The CG of the tangent ogive lies along the axis of symmetry at a distance z̄ from
the ogival base, given by

z̄
R
=

π

V/R3

(
−

2
3
( f − 1)

(
f 3 − ( f − 1)3

)
+

1
2
(
f 2 + ( f − 1)2

)
λ2 −

1
4
λ4

)
. (3)

Note that V/R3, appearing in the denominator, is available from Eq. 2.

The moment of inertia about the axis of symmetry of the tangent ogive is given as

Izz

ρR5 =
π

2

(
− f 2( f − 1)

(3
2

f 2 + 2( f − 1)2
)

sin−1
( λ

f

))
(

f 4 +
9
2

f ( f − 1)2 − 2( f − 1)4
)
λ −

(2
3

f 2 + 2( f − 1)2
)
λ3 +

1
5
λ5

.(4)

An alternate (but equivalent) expression may also be derived for Izz, by using the
shell method of integration (rather than the disk method). Because it requires a
recursive integration to reduce the order of the integrand, it yields an integral in
which the integration constants bi are recursively calculated:

Izz

ρR5 = π

((
f 2 sin−1

( λ
f

)
− ( f − 1)λ

)
b0 − 2

(b1
3
+

b2
4
+

b3
5

)
λ3

)
, (5)

where

b0 =

b1 =

b2 =

b3 =

+1 + 3
3 b1 f

−3 + 5
4 b2 f

+3 + 7
5 b3 f

−1

.

The moment of inertia of the tangent ogive, about an axis lying in the basal plane

4
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of the ogive and perpendicular to the symmetry axis, is

Ixx

ρR5

����
base
=

Iyy
ρR5

����
base
=
π

4

(
− f 2( f − 1)

(5
2

f 2 + 2( f − 1)2
)

sin−1
( λ

f

))f 2
(

f 2 +
7
2
( f − 1)2

)
λ +

1
15
λ5

. (6)

The comparable moment of inertia about the CG follows directly from the parallel-
axis theorem, such that

Ixx

ρR5

����
cg
=

Ixx

ρR5

����
base
−

V
R3

( z̄
R

)2
(7)

and likewise for Iyy
��
cg.

One may express the previous moments of inertia in terms of the ogive mass using
Eq. 2:

Iii

mR2 =
Iii

ρR5 ·
1

V/R3 , (8)

where ii = xx, yy, or zz.

4.1 Special-Case Check: Hemispherical Ogive
The prior relations may be checked against known special cases for which analytical
results also exist. One such case is the hemispherical ogive, in which f = λ = 1. For
this special case, it may be verified with the formulae (Eqs. 2–8) that the volume
and CG of the hemispherical ogive are, respectively,

V
R3 =

2π
3

,

z̄
R
=

3
8

.

The moments of inertia evaluate as

Izz

ρR5 =
4π
15

,

Ixx

ρR5

����
base
=

Iyy
ρR5

����
base
=

4π
15

,

Ixx

ρR5

����
cg
=

Iyy
ρR5

����
cg
=

83π
480

.

5
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In terms of mass, the moments of inertia are

Izz

mR2 =
2
5

,

Ixx

mR2

����
base
=

Iyy
mR2

����
base
=

2
5

,

Ixx

mR2

����
cg
=

Iyy
mR2

����
cg
=

83
320

.

These results are wholly in agreement with published results for hemispherical bod-
ies.5

4.2 General Check: Numerical Integration
The derived inertial properties for tangent ogives are also validated against the com-
parable numerical integrations (using finite disks and shells). The f77 code pre-
sented in Appendix B was exercised for purposes of validating the analytical results
derived in this note.

In the numerically integrated comparison, shown in Table 1 for four different cases
of ogive radius, the ogival domain was successively discretized into either 1000
stacked disks or 1000 concentric shells in order to numerically evaluate the inertial
properties. Validation is achieved, though it is worthy to note that several orders-
of-magnitude finer discretization is needed for the numerical integration to match
the analytical results to 5 decimal places shown in the table, especially as f grows
larger.

6
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Table 1 Validation of analytically derived inertial properties for tangent ogives, for various
values of nondimensionalized radius-of-ogive-curvature, f

Case: f = 1 (λ = 1.000)

Ixx
ρR5

����
cg

Ixx
ρR5

����
base

Izz
ρR5

z̄/R

V/R3

0.54323

0.83776

0.83776

0.37500
2.09440

Analytical

0.54222

0.83779

0.83778

0.37566
2.09441

Numerical
Case: f = 2 (λ = 1.732)

Ixx
ρR5

����
cg

Ixx
ρR5

����
base

Izz
ρR5

z̄/R

V/R3

1.08708

2.14828

1.23195

0.57907
3.16472

Analytical

1.08398

2.14840

1.23198

0.57995
3.16475

Numerical

Case: f = 6 (λ = 3.317)

Ixx
ρR5

����
cg

Ixx
ρR5

����
base

Izz
ρR5

z̄/R

V/R3

3.99946

10.36115

2.18578

1.05652
5.69928

Analytical

3.98261

10.36193

2.18582

1.05798
5.69932

Numerical
Case: f = 10 (λ = 4.3589)

Ixx
ρR5

����
cg

Ixx
ρR5

����
base

Izz
ρR5

z̄/R

V/R3

7.87736

21.94154

2.83497

1.37747
7.41229

Analytical

7.84080

21.94327

2.83502

1.37934
7.41234

Numerical

7
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5. Inertial Properties of the Secant Ogive
Mathematically, it proves easiest to visualize any given secant ogive as the corre-
sponding∗ tangent ogive of length λR, from which an axial length λ0R has been
truncated from the base end of the ogive. Thus, the ballistic length BL of the secant
ogive may be expressed as BL/R = λ − λ0. The length R used for nondimensional-
ization is and remains the radius of the corresponding tangent ogive (not the secant
radius!). Whereas a tangent ogive is wholly described in terms of two parameters
f and R, the secant ogive requires one additional parameter, λ0, characterizing the
extent of truncation.

In the equations that follow, the term a is shorthand for

a = f − 1 .

The term λ is the nondimensional length of the corresponding tangent ogive, given
in terms of f by Eq. 1, as λ =

√
2 f − 1. The term λ0 represents the nondimensional

length of the corresponding tangent ogive that is removed from the ogive base, so
as to obtain the desired secant ogive. A depiction of this is shown in Fig. 3.

ξ0R

RaR
fR − ξ̂(λ0, f )R

λ0R

O

z

x
P

z = λR

ogive
secant

ogive
tangent

corresponding

fR

Fig. 3 Secant ogive seen as a truncation of the corresponding tangent ogive

∗By corresponding, we mean a tangent ogive with the same ogival nondimensional radius of
curvature as the secant ogive of interest. Thus, a secant ogive and its corresponding tangent ogive
share the same value of f .

8
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Defining the intermediate function V in terms of f and a dummy variable η, as

V(η, f ) = π
[
( f 2 + a2)η −

η3

3
− a

(
η

√
f 2 − η2 + f 2 sin−1

( η
f

))]
, (9)

the secant-ogive volume (V) may be obtained (in terms of f , R, and λ0) as

V
R3 = V(λ, f ) − V(λ0, f ) . (10)

Defining the intermediate function Z as

Z(η, f ) =
π

V/R3

[
( f 2 + a2)

η2

2
−
η4

4
+

2
3

a( f 2 − η2)3/2
]

, (11)

the secant-ogive CG (z̄), taken with respect to the secant-ogive base, is obtained as

z̄
R
= Z(λ, f ) − Z(λ0, f ) − λ0 . (12)

Defining the intermediate function Izz as

Izz(η, f ) =
π

2

[

− 2a3
(
η

√
f 2 − η2 + f 2 sin−1

( η
f

))]− a
(
η( f 2 − η2)3/2 +

3
2

f 2η

√
f 2 − η2 +

3
2

f 4 sin−1
( η

f

))f 4η −
2
3

f 2η3 +
1
5
η5 + 6 f 2a2η − 2a2η3 + a4η

, (13)

the moment of inertia of a secant ogive about its axis may be obtained as

Izz

ρR5 = Izz(λ, f ) − Izz(λ0, f ) . (14)

An alternate formulation may be obtained for Izz using the method of shells to set
up the integration. The appearance of the term ξ̂ (appearing in Fig. 3) represents a
radial quantity wholly expressible in terms of the independent variables as

ξ̂(η, f ) = f −
√

f 2 − η2 .

The bi constants are defined identically as found in Eq. 5. Defining the intermediate

9



Approved for public release; distribution is unlimited.

function Jzz as

Jzz(η, f ) = −π
((

f 2 cos−1
( η

f

)
+ ( f − ξ̂)η

)
b0 + 2

(b1
3
+

b2ξ̂

4
+

b3ξ̂
2

5

)
η3

)
, (15)

the moment of inertia of a secant ogive about its axis may be alternately obtained
as

Izz

ρR5 = Jzz(λ, f ) − Jzz(λ0, f ) −
π

2
λ0ξ

4
0 , (16)

where ξ0 is the nondimensional radius of the secant ogive, Rsecant/R, given mathe-
matically as

Rsecant

R
= ξ0 = 1 − ξ̂(λ0, f ) = 1 − f +

√
f 2 − λ2

0 . (17)

Defining the intermediate function Ixx as

Ixx(η, f ) =
π

4

(

− 2a3
[
η
√

f 2 − η2 + f 2 sin−1(η/ f )
]
+ a4η

)+ 6a2
[

f 2η − 1
9η

3
]+ a

[
η( f 2 − η2)3/2 − 5

2 f 2η
√

f 2 − η2 − 5
2 f 4 sin−1(η/ f )

]
[

f 4η + 2
3 f 2η3 − 3

5η
5
]

., (18)

the moment of inertia about an axis lying in the base of the corresponding tangent
ogive, perpendicular to the axis of symmetry, may be obtained as

Ixx

ρR5

�����
tangent-base

= Ixx(λ, f ) − Ixx(λ0, f ) . (19)

That same moment, taken with respect to the CG of the secant ogive, is

Ixx

ρR5

�����
cg

= Ixx(λ, f ) − Ixx(λ0, f ) −
V
R3

( z̄
R
+ λ0

)2
. (20)

For all the moments given previously, Eq. 8 may be used to convert the results in
terms of mass, rather than volume. Discussion of how the results of this section were
obtained is described in Appendix C. Validation of these results has been performed
by the author, but is not shown here. However, the code for doing so is provided in
Appendix D.

10
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One last point to be made regarding secant ogives is that the current derivations are
fundamentally expressed in terms of the geometrical properties of the correspond-
ing tangent ogive ( f , R, and λ0). In the practical usage actually employed by ogive
designers, the specification is given in terms of the secant geometry, by way of the
secant radius Rsecant and two CRH numbers. The first of the two numbers describes
the hypothetical tangent CRH that would produce the given secant-ballistic length.
The second of the two numbers describes the CRH associated with the actual curva-
ture of the ogive, normalized to the secant diameter.

Expressed as “A/B CRH”, these terms may be derived in terms of the current ( f , R,
λ0) nomenclature as

A =
1 +

(
(λ − λ0)

R
Rsecant

)2

4
and

B =
f
2

R

Rsecant

,

where λ is given by Eq. 1 and Rsecant is given by Eq. 17. For example, an f = 6
ogive with no truncation (λ0 = 0) represents a 3/3CRH tangent ogive. However,
if 25% of the tangent length were lopped off (λ0/λ = 0.25), the resulting secant
ogive would have a reduced diameter, Rsecant/R = 0.94 and a 1.99/3.18CRH. These
variations can be explored with the code provided in Appendix D.

6. Conclusions
The inertial properties for ballistic ogives have been analytically calculated in closed
form. The calculations are included for tangent ogives, defined by two independent
parameters f and R, as well as for secant ogives, whose geometry is defined by
three independent parameters f , R, and λ0.

The properties derived include the ogival volume (mass), the CG, and the various
moments of inertia (of course, the ogive density must also be known if these prop-
erties are to be expressed in terms of mass, rather than volume). The value of these
results is immediately apparent to anyone conducting rigid-body analyses of ax-
isymmetric ballistic bodies. In the absence of such closed-form expressions, one
must instead rely on numerical integration methods, which are less accurate and
computationally costlier by orders of magnitude.

11
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Appendix A. Integration of Inertial Properties for Tangent Ogives
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A.1 Ogive Volume
The ogive volume can be integrated using either the shell or disk method. The au-
thor has done both and confirmed (after some manipulation) co-equal results. Here,
however, for simplicity, only the disk method is presented. The relevant variables
are presented in Fig. A-1, with the side view of the circular integration disk shown
in gray. By nondimensionalizing all the variables, the integration may proceed in η
over the limits η = 0 to η = λ.

ξR

RaR
XR

ηR

R dη

O

z

x
P

fR

z = λR

Fig. A-1 Disk method of ogive integration

We use the shorthand a to represent the fixed value a = f − 1. We introduce the
variable of convenience, X , which can be expressed either in terms of the horizontal
dimension (ξ) or alternately the vertical coordinate (η) of the disk as

X2 = (a + ξ)2 = f 2 − η2 . (A-1)

As η varies from 0 to λ, X varies from f to a. The differential volume of the inte-
gration disk is

dV
R3 = πξ

2dη . (A-2)

The variable ξ can be eliminated in favor of X via substitution as

dV
R3 = π(X

2 − 2aX + a2) dη ,

14



Approved for public release; distribution is unlimited.

followed by the elimination of X in favor of η:

dV
R3 = π

(
f 2 − η2 − 2a

√
f 2 − η2 + a2

)
dη . (A-3)

Since all the dimensional variables are positive, we retain the positive square root.
The integration, which sets up as

V
R3 = π

∫ λ

0

(
f 2 − η2 − 2a

√
f 2 − η2 + a2

)
dη ,

may proceed, using standard integrals 7 and 200 in the CRC handbook1:

V
R3 = π

[
( f 2 + a2)η −

η3

3
− a

(
η

√
f 2 − η2 + f 2 sin−1

( η
f

))]η=λ
η=0

. (A-4)

Noteworthy is the term
√

f 2 − η2, which evaluates to a at the upper η = λ limit,
producing a (−a2λ) term that cancels with an earlier occurrence. The final result,
eliminating a in favor of f − 1, becomes

V
R3 = π

((
f 2 −

1
3
λ2

)
λ − f 2( f − 1) sin−1

( λ
f

))
,

given as Eq. 2 in the main body of this note.

A.2 Center of Gravity
The CG of the ogive, because of symmetry, lies along the axis of symmetry. Nonethe-
less, the z-distance from the base of the ogive is not immediately apparent. The
well-known formula for determining the CG, in the context of the ogive geometry,
is

z̄ =

∫
ηR dV∫

dV
=

R
V/R3

∫
η

dV
R3 .

This may be converted into a disk-based η integration by way of Eq. A-3:

z̄
R
=

1
V/R3

∫ λ

0
π
(

f 2 − η2 − 2a
√

f 2 − η2 + a2
)
η dη .

We may again proceed, employing standard integrals 7 and 205 in the CRC handbook,1

1Beyer WH. CRC standard math tables. 26th ed. Boca Raton: CRC Press; 1981.
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to obtain

z̄
R
=

π

V/R3

[
( f 2 + a2)

η2

2
−
η4

4
− 2a

(
−

1
3
( f 2 − η2)3/2

)]λ
η=0

. (A-5)

Again noteworthy (by way of Eq. A-1) is the evaluation of ( f 2−η2)3/2. At the upper
limit, it evaluates to a3 and at the lower limit, to f 3. The final result, eliminating a

in favor of f − 1, becomes

z̄
R
=

π

V/R3

(
−

2
3
( f − 1)

(
f 3 − ( f − 1)3

)
+

1
2
(
f 2 + ( f − 1)2

)
λ2 −

1
4
λ4

)
,

which is given as Eq. 3 in the main body of this note.

A.3 Moment of Inertia About the Symmetry Axis: Izz (Disk Method)
Using the disk method to obtain the moment of inertia of the tangent ogive about the
axis of symmetry is a simple exercise of summing the contributions of differential
moment of inertia for each of the disks composing the ogive (see Fig. A-1). The
moment of inertia of each disk about the axis of symmetry is given in any textbook
reference2 as

dIzz =
1
2

r2 dm .

This expression can be nondimensionalized, using Eq. A-2 and the notations of
Fig. A-1, as

dIzz

ρR5 =
1
2
ξ2 dV

R3 =
π

2
ξ4 dη .

Since ξ may be expressed as ξ = X − a by way of Eq. A-1, we may expand the
binomial power to get

dIzz

ρR5 =
π

2
(
X4 − 4aX3 + 6a2X2 − 4a3X + a4) dη .

The X term may be expressed in terms of η, by way of Eq. A-1, as

dIzz

ρR5 =
π

2

(
( f 2 − η2)2 − 4a( f 2 − η2)3/2 + 6a2( f 2 − η2) − 4a3

√
f 2 − η2 + a4

)
dη .

This expression needs to be integrated and evaluated between the limits η = 0 and

2Beer FP, Johnston Jr ER. Vector mechanics for engineers: Dynamics. 3rd ed. New York:
McGraw Hill; 1977.
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η = λ. We may employ standard integrals 7, 200, and 206 in the CRC handbook,1

to obtain

Izz

ρR5 =
π

2

[

− 4a3 ·
1
2

(
η

√
f 2 − η2 + f 2 sin−1

( η
f

))]λ
η=0

− 4a ·
1
4

(
η( f 2 − η2)3/2 +

3
2

f 2η

√
f 2 − η2 +

3
2

f 4 sin−1
( η

f

))f 4η −
2
3

f 2η3 +
1
5
η5 + 6 f 2a2η − 2a2η3 + a4η

. (A-6)

We again make use of the fact that
√

f 2 − η2 evaluates to a at the upper limit η = λ.
Terms may be collected and canceled to arrive at the final result

Izz

ρR5 =
π

2

(
− f 2( f − 1)

(3
2

f 2 + 2( f − 1)2
)

sin−1
( λ

f

))
(

f 4 +
9
2

f ( f − 1)2 − 2( f − 1)4
)
λ −

(2
3

f 2 + 2( f − 1)2
)
λ3 +

1
5
λ5

,

given as Eq. 4 in the main body of this note.

A.4 Moment of Inertia About the Symmetry Axis: Izz (Shell Method)
With the method of integration by shells, the axisymmetric domain is not sliced
axially into thin disks, but rather constructed as a series of concentric hollow cylin-
drical shells, about the axis. The technique is illustrated in Fig. A-2, with the gray
areas representing the radial section of a hollow cylindrical shell within the ogive.
As such, the integration variable becomes ξ rather than η.

Such a cylindrical shell has volume based on its circumference and height:

dV
R3 = η(2πξ) dξ .

The moment of inertia, about the axis of the shell, is merely

dIzz = r2 dm .

Nondimensionalized and using the notation of Fig. A-2, this expression becomes

dIzz

ρR5 = ξ
2 dV

R3 = 2πξ3η dξ .
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ξR

R
ξ̂R

ηR

R dξ

O

z

x
P

fR

z = λR

Fig. A-2 Shell method of ogive integration

We note, in light of Fig. A-2, the complementary variable, ξ̂ = 1 − ξ. Further, from
the Pythagorean Theorem, we may establish that

( f − ξ̂)2 + η2 = f 2

We can use this to solve for η in terms of ξ̂:

η =

√
2 f ξ̂ − ξ̂2 .

We may substitute this for η and establish the differential for Izz in terms of ξ̂:

dIzz

ρR5 = −2π(1 − ξ̂)3
√

2 f ξ̂ − ξ̂2 dξ̂ ,

where ξ̂ varies from 1 to 0 (as ξ varies from 0 to 1). Thus, we can eliminate the
leading negative sign by instead varying ξ̂ from 0 to 1.

The binomial can be expanded and the integration set up as

Izz

ρR5 = 2π
∫ 1

0
(1 − 3ξ̂ + 3ξ̂2 − ξ̂3)

√
2 f ξ̂ − ξ̂2 dξ̂ . (A-7)

These integrals appear as 264 and 266 in the CRC handbook.1 However, in cases
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where the square root is multiplied by a power of ξ̂, the integral produces a defined
term and then reduces to an integral with a lower power of ξ̂. Thus, there is some-
thing of an iteration, collecting terms at each step. The details of this integration are
left to the reader. However, prior to evaluation, the integral may be expressed as

Izz

ρR5 = −π

((
f 2 cos−1

( η
f

)
+ ( f − ξ̂)η

)
b0 + 2

(b1ξ̂
0

3
+

b2ξ̂
1

4
+

b3ξ̂
2

5

)
η3

)����1
ξ̂=0

,(A-8)

where the bi terms are constants. In Eq. A-8, the substitutions have already been

made that
√

2 f ξ̂ − ξ̂2 = η and sin−1[(ξ̂ − f )/ f ] = − cos−1(η/ f ). Note that, during
the subsequent limit evaluation, η(ξ̂ = 0) = 0 and η(ξ̂ = 1) = λ.

To better understand one of the previous substitutions, the evaluation of the integrals
in Eq. A-7 produce terms of the form

sin−1 ξ̂ − f
f

����1
ξ̂=0
= sin−1 1 − f

f
+
π

2
.

Let the angle sin−1[(1 − f )/ f ] be denoted as α. Note that, since f ≥ 1 is required,
α ≤ 0 will result. Therefore, the value of α + π/2 will represent the complement to
α, call it β, as seen in Fig. A-3. The angle α may be recast as −cos−1[λ/ f ].

β

α
λ =

√
2 f − 1

1 − f (< 0)
f

β

Fig. A-3 Recasting sin−1[(1 − f )/ f ] as −cos−1(λ/ f ) and seeing β as the complement to α

This leads directly to the substitution

sin−1 1 − f
f
+
π

2
= − cos−1

( λ
f

)
+
π

2
= sin−1

( λ
f

)
.
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The final result for the Izz moment of inertia, by way of the shell method, is

Izz

ρR5 = π

((
f 2 sin−1

( λ
f

)
− ( f − 1)λ

)
b0 − 2

(b1
3
+

b2
4
+

b3
5

)
λ3

)
,

where

b0 =

b1 =

b2 =

b3 =

+1 + 3
3 b1 f

−3 + 5
4 b2 f

+3 + 7
5 b3 f

−1

,

which appears as Eq. 5 in the main body of this note.

A.5 Moment of Inertia About an Axis in the Ogive’s Basal Plane: Ixx

We desire to use the disk method of integration to obtain the moment of inertia of the
tangent ogive about an axis lying in the ogive’s basal plane, which is perpendicular
to the axis of symmetry. As before, we must sum the contributions of the differential
moment of inertia for each of the disks composing the ogive (see Fig. A-1). The
moment of inertia of each disk about an axis lying in the plane of the disk itself is
given in any textbook reference2 as

dIxx

R2

����
disk centered

=
1
4
ξ2 dm .

To obtain its contribution to the moment of inertia of the ogive, we must use the
parallel-axis theorem to translate the reference axis from the center of the disk back
to the base of the ogive:

dIxx

R2

����
base
=

1
4
ξ2 dm + η2 dm .

Nondimensionalize the expression, using the nomenclature of Fig. A-1:

dIxx

ρR5

����
base
=

1
4
(ξ2 + 4η2)

dV
R3 =

π

4
(ξ2 + 4η2)ξ2 dη .

Thus,
Ixx

ρR5

����
base
=
π

4

∫ λ

0
(ξ4 + 4η2ξ2) dη . (A-9)
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With the help of Eq. A-1, we may express the individual terms as

4η2ξ2 =

ξ4 =

4(X2 − 2aX + a2)η2

X4 − 4aX3 + 6a2X2 − 4a3X + a4

The powers of X may be expanded, in terms of η, using Eq. A-1:

X4 =

X3 =

X2 =

X =

( f 2 − η2)2 = f 4 − 2 f 2η2 + η4

( f 2 − η2)3/2

f 2 − η2

√
f 2 − η2

,

which may be substituted into the prior expressions to yield the terms requiring
integration

4η2ξ2 dη =

ξ4 dη =

+ 4a2 [η2] dη

− 8a
[
η2

√
f 2 − η2

]
dη

4
[

f 2η2 − η4] dη

+ a4 dη

− 4a3 [√ f 2 − η2
]

dη

+ 6a2 [ f 2 − η2] dη

− 4a
[
( f 2 − η2)3/2

]
dη

[
f 4 − 2 f 2η2 + η4] dη

Term

7 .

210

7

1

200

7

206

7

CRC Integral1
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Each integral (available in the cited reference1) may be substituted into Eq. A-9:

Ixx

ρR5

�����
base

=
π

4

(

+ 4a2
[

1
3η

3
] )λ
η=0

− 8a
[
−1

4η( f
2 − η2)3/2 + 1

8 f 2
(
η
√

f 2 − η2 + f 2 sin−1(η/ f )
)]+ 4

[
1
3 f 2η3 − 1

5η
5
]+ a4η

− 4a3
[

1
2

(
η
√

f 2 − η2 + f 2 sin−1(η/ f )
)]+ 6a2

[
f 2η − 1

3η
3
]− 4a

[
1
4

(
η( f 2 − η2)3/2 + 3

2 f 2η
√

f 2 − η2 + 3
2 f 4 sin−1(η/ f )

)]
[

f 4η − 2
3 f 2η3 + 1

5η
5
]

.

This expression can be somewhat simplified, even prior to evaluation at the limits:

Ixx

ρR5

�����
base

=
π

4

(

− 2a3
[
η
√

f 2 − η2 + f 2 sin−1(η/ f )
]
+ a4η

)λ
η=0

+ 6a2
[

f 2η − 1
9η

3
]+ a

[
η( f 2 − η2)3/2 − 5

2 f 2η
√

f 2 − η2 − 5
2 f 4 sin−1(η/ f )

]
[

f 4η + 2
3 f 2η3 − 3

5η
5
]

. (A-10)

After evaluation between the limits η = 0 and η = λ, following much combination
and cancellation of terms, and replacing a with f−1, the final result may be acquired
as

Ixx

ρR5

����
base
=

Iyy
ρR5

����
base
=
π

4

(
− f 2( f − 1)

(5
2

f 2 + 2( f − 1)2
)

sin−1
( λ

f

))f 2
(

f 2 +
7
2
( f − 1)2

)
λ +

1
15
λ5

,

which is given as Eq. 6 in the main body of this note.
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Appendix B. Tangent Ogive Validation Code
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c PROVIDES INERTIAL PROPERTIES FOR TANGENT OGIVES

c

c The origin of this program’s coordinate system is at the

c center of the tangent-ogive base, z-axis along ogive

c axis of symmetry.

c

c Given bullet radius R and density rho,

c Actual V is R**3 x that which is output

c Actual mass is rho * R**3 x that which is computed from volume

c Actual Izz is rho * R**5 x that which is output

c Actual Ixx is rho * R**5 x that which is output

c Actual Ixx/m is R**2 x that which is output

c Actual Izz/m is R**2 x that which is output

c

implicit none

double precision f, Lm, h, r, V, Izz, PI, rbar, dr, crh, dh,

& b0, b1, b2, b3, Ixx, hminus, hbar, rminus,

& IhdV, cgz, Jzz

integer n, i

PARAMETER (n=1000)

PI = 4.0d0*atan(1.d0)

print *, ’Enter crh: ’

read (*,*) crh

if (crh .lt. 0.5d0) then

print *, ’crh must be 0.5 or greater.’

stop

end if

f = crh * 2.d0

print *, ’head-curvature radius / tangent radius = ’, f

Lm = sqrt(2.d0*f - 1.d0)

print *, ’Tangent Ballistic Length / tangent radius = ’, Lm

print *, ’NUMERICAL INTEGRATION (’, n, ’ STEPS)’

V = 0.d0

Ixx = 0.d0

Izz = 0.d0

IhdV = 0.d0

dr = 1./float(n)

do i = 1, n

r = (float(i) - 0.0d0)/float(n)

rbar = (float(i) - 0.5d0)/float(n)

rminus = (float(i) - 1.0d0)/float(n)

h = sqrt(f**2 - (f-1 + r )**2)

hbar = sqrt(f**2 - (f-1 + rbar )**2)

hminus = sqrt(f**2 - (f-1 + rminus)**2)

dh = hminus - h

V = V + hbar * 2.d0 * PI * rbar * dr! EITHER

c V = V + PI * rbar**2 * dh! OR

Izz = Izz + hbar * 2.d0 * PI * rbar**3 * dr

Ixx = Ixx + PI/4.d0*rbar**2 *
& (rbar**2 + 4.d0*hbar**2)*dh

IhdV = IhdV + hbar * PI*rbar**2 * dh

end do

cgz = IhdV / V

write(*,99) ’Volume = ’, V
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write(*,99) ’CGz = ’, cgz, ’ (wrt tangent-ogive base)’

write(*,98) ’Izz = ’, Izz

write(*,99) ’Izz/m = ’, Izz/V, ’ (axis)’

write(*,98) ’Ixx = ’, Ixx

write(*,99) ’Ixx/m = ’, Ixx/V,

& ’ (about tangent-ogive base)’

write(*,98) ’Ixx_0 = ’, Ixx - V*cgz**2

write(*,99) ’Ixx_0/m = ’, (Ixx/V - cgz**2),

& ’ (about tangent ogive CG)’

print *, ’ANALYTICAL’

c TANGENT-OGIVE VOLUME

V = PI* ((f**2 - 1.d0/3.d0*Lm**2)*Lm - f**2*(f-1.d0)*asin(Lm/f))

c INTEGERAL h dV AND THE CENTER OF GRAVITY

IhdV = PI * (

& - 2.d0/3.d0*(f-1.d0)*(f**3 - (f-1.d0)**3)

& + 0.5d0*(f**2 + (f-1.d0)**2)*Lm**2

& - 0.25d0*Lm**4 )

cgz = IhdV / V

c MOMENT OF INERTIA ABOUT OGIVE AXIS OF SYMMETRY (DISKS)

Izz = .5d0*PI *(

& (f**4 + 4.5d0*f**2*(f-1.d0)**2 - 2.d0*(f-1.d0)**4)*Lm

& -(2.d0/3.d0*f**2 + 2.d0*(f-1.d0)**2)*Lm**3 +Lm**5/5.d0

& -f**2*(f-1.d0)*asin(Lm/f)*(1.5d0*f**2 + 2.d0*(f-1.d0)**2)

& )

c MOMENT OF INERTIA ABOUT OGIVE AXIS OF SYMMETRY (SHELLS)

b3 = -1.d0

b2 = +3.d0 + b3 * f * 7.d0/5.d0

b1 = -3.d0 + b2 * f * 5.d0/4.d0

b0 = +1.d0 + b1 * f * 3.d0/3.d0

Jzz = PI*( (f**2 * asin(Lm/f) - (f - 1.d0) * Lm) * b0

& -2.0d0 * (b1/3.d0 + b2/4.d0 + b3/5.d0) * Lm**3 )

c MOMENT OF INERTIA ABOUT CENTER OF TANGENT-OGIVE BASE

Ixx = PI/4.d0 * (

& + f**2*(f**2 + 3.5d0*(f-1.d0)**2)*Lm + 1.d0/15.d0*Lm**5

& - f**2*(f-1.d0)*(2.5d0*f**2 + 2.d0*(f-1.d0)**2) * asin(Lm/f)

& )

write(*,99) ’Volume = ’, V

write(*,99) ’CGz = ’, cgz, ’ (wrt tangent-ogive base)’

write(*,98) ’Izz = ’, Izz

write(*,99) ’Izz/m = ’, Izz/V, ’ (axis - disks)’

write(*,98) ’Izz = ’, Jzz

write(*,99) ’Izz/m = ’, Jzz/V, ’ (axis - shells)’

write(*,98) ’Ixx = ’, Ixx

write(*,99) ’Ixx/m = ’, Ixx/V,

& ’ (about tangent-ogive base)’

write(*,98) ’Ixx_0 = ’, Ixx - V*cgz**2

write(*,99) ’Ixx_0/m = ’, (Ixx/V - cgz**2),

& ’ (about tangent-ogive CG)’

98 format(a,f8.5,’ ’,$)

99 format(a,f8.5,a)

stop

end
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Appendix C. Extension of the Method to Secant Ogives
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The comparable results for secant ogives are presented in Section 5 of this note.
While the resulting expressions may be more complicated vis-à-vis tangent ogives,
the approach itself is identical to that already presented in Appendix A, with a few
minor changes. There is no mathematical impediment to pursuing this avenue. In
fact, the validated f77 code for doing so is presented in Appendix D.

For the disk-method integrations already described in Appendix A, it is only the
limits of integration that need be changed for the secant-ogive case. While BL is the
secant-ogive ballistic length, we retain λ = BLtan/R =

√
2 f − 1 (Eq. 1) to describe

the nondimensional ballistic length of the tangent ogive corresponding to the same
ogival radius of curvature of the secant ogive under consideration. Define λ0 =

(BLtan−BL)/R to describe the nondimensional difference between the corresponding
tangent and given secant-ogive ballistic lengths. The term λ0 may be thought of as
the nondimensional length truncated from the base of the corresponding tangent
ogive to produce the secant ogive of interest.

To achieve the disk-method integrations for secant ogives, merely take the integra-
tions (Eqs. A-4, A-5, A-6, and A-10) between the limits λ0 and λ, rather than 0 to
λ. The CG z̄ will be with respect to the corresponding tangent-ogive base, unless
shifted to the secant-ogive base by a distance λ0R.

Likewise, in the case of Eq. A-10, the “base” axis, about which the Ixx moment of
inertia is calculated, is the base of the corresponding tangent ogive, not the secant
ogive. Therefore, the parallel axis theorem must be employed (see Eq. 7) to shift the
moment axis to the CG of the secant ogive. Note that, as λ0 → 0, the secant-ogive
geometry approaches that of the corresponding tangent ogive.

For shell-method integration, two two alterations are required. As in the disk method,
the lower limit of the ξ̂ integration (Eq. A-8) needs to be replaced with ξ̂0, where
the term ξ̂0 = 1− ξ0 = f −

√
f 2 − λ2

0 represents a nondimensional radius difference
between the secant and corresponding tangent ogives.

Second, the height of the cylindrical shell, given nondimensionally by the term η in
the shell integration, must be decremented by an offset value of λ0. This decrement
will introduce an additional term to the moment-of-inertia integrand of Eq. A-7,
corresponding to the Izz moment of inertia of the cylinder falling outside the secant
ogive, but inside the corresponding tangent ogive. That cylinder is located in the
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domain z/R = [0, λ0] and r/R = [0, ξ0] and the decremental term takes the form of
∆Izz/ρR5 = −2πλ0

∫ 1
ξ̂0
(1 − ξ̂)3 dξ̂ = −1

2πλ0ξ
4
0 . As in the case of λ0, the term ξ̂0 →

0 when the secant-ogive geometry approaches that of the corresponding tangent
ogive.
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Appendix D. Secant Ogive Validation Code
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c PROVIDES INERTIAL PROPERTIES FOR SECANT OGIVES

c

c Think of the secant ogive as a tangent ogive that has had

c a fraction of its length lopped off at the base.

c

c The origin of this program’s coordinate system is at the

c center of the tangent-ogive base, z-axis along ogive

c axis of symmetry.

c

c Given bullet radius R and density rho,

c Actual V is R**3 x that which is output

c Actual mass is rho * R**3 x that which is computed from volume

c Actual Izz is rho * R**5 x that which is output

c Actual Ixx is rho * R**5 x that which is output

c Actual Ixx/m is R**2 x that which is output

c Actual Izz/m is R**2 x that which is output

c

implicit none

double precision f, Lm, h, r, V, Izz, PI, rbar, dr, crh, dh,

& b0, b1, b2, b3, Ixx, hminus, hbar, rminus,

& IhdV, cgz, L0, Lmfrac, Rsc, Jzz, crhtan,

& Vfunc, xbarfunc, Izzfuncdisk, Ixxfunc, Izzfuncshell

integer n, i

PARAMETER (n=100000)

PI = 4.0d0*atan(1.d0)

print *, ’Enter tangent crh AND ’,

& ’fraction of tangent-ogive length lopped off: ’

read (*,*) crhtan, Lmfrac

if (crhtan .lt. 0.5d0) then

print *, ’tangent crh must be 0.5 or greater.’

stop

end if

f = crhtan * 2.d0

print *, ’head-curvature radius / tangent radius = ’, f

Lm = sqrt(2.d0*f - 1.d0)

print *, ’Tangent Ballistic Length / tangent radius = ’, Lm

L0 = Lmfrac * Lm

print *, ’Secant Ballistic Length / tangent radius = ’, Lm-L0

print *, ’Lopped Length / tangent radius = ’, L0

Rsc = 1.d0 - f + sqrt(f**2 - L0**2)

print *, ’Secant-Ogive radius / tangent radius = ’, Rsc

crh = crhtan / Rsc

print *, ’head-curvature radius / secant diam. = ’, crh

write(*,’(/,f6.3,’’/’’,f6.3,’’crh’’,/)’)

& (1.d0 + ((Lm-L0)/Rsc)**2)/4.d0, crh

print *, ’NUMERICAL INTEGRATION (’, n, ’ STEPS)’

V = 0.d0

Ixx = 0.d0

Izz = 0.d0

IhdV = 0.d0

dr = Rsc/float(n)

do i = 1, n

r = (float(i) - 0.0d0)/float(n) * Rsc

rbar = (float(i) - 0.5d0)/float(n) * Rsc
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rminus = (float(i) - 1.0d0)/float(n) * Rsc

h = sqrt(f**2 - (f-1 + r )**2) - L0

hbar = sqrt(f**2 - (f-1 + rbar )**2) - L0

hminus = sqrt(f**2 - (f-1 + rminus)**2) - L0

dh = hminus - h

V = V + hbar * 2.d0 * PI * rbar * dr! EITHER

c V = V + PI * rbar**2 * dh! OR

Izz = Izz + hbar * 2.d0 * PI * rbar**3 * dr

Ixx = Ixx + PI/4.d0*rbar**2 *
& (rbar**2 + 4.d0*(L0 + hbar)**2)*dh

IhdV = IhdV + (L0 + hbar) * PI*rbar**2 * dh

end do

cgz = IhdV / V

write(*,99) ’Volume = ’, V

write(*,99) ’CGz = ’, cgz, ’ (wrt tangent-ogive base)’

write(*,99) ’CGz = ’, cgz-L0, ’ (wrt secant-ogive base)’

write(*,98) ’Izz = ’, Izz

write(*,99) ’Izz/m = ’, Izz/V, ’ (axis)’

write(*,98) ’Ixx = ’, Ixx

write(*,99) ’Ixx/m = ’, Ixx/V,

& ’ (about tangent-ogive base)’

write(*,98) ’Ixx_0 = ’, Ixx - V*cgz**2

write(*,99) ’Ixx_0/m = ’, (Ixx/V - cgz**2),

& ’ (about secant-ogive CG)’

print *, ’ANALYTICAL’

c TANGENT-OGIVE VOLUME

V = PI * (Vfunc(Lm,f) - Vfunc(L0,f))

c INTEGERAL h dV AND THE CENTER OF GRAVITY

IhdV = PI * (xbarfunc(Lm,f) - xbarfunc(L0,f))

cgz = IhdV / V - L0

c MOMENT OF INERTIA ABOUT OGIVE AXIS OF SYMMETRY (DISKS)

Izz = .5d0*PI * (Izzfuncdisk(Lm,f) - Izzfuncdisk(L0,f))

c MOMENT OF INERTIA ABOUT OGIVE AXIS OF SYMMETRY (SHELLS)

Jzz = -PI * (Izzfuncshell(Lm,f) - Izzfuncshell(L0,f)

& + 0.5d0*L0*Rsc**4 )

c MOMENT OF INERTIA ABOUT CENTER OF TANGENT-OGIVE BASE

Ixx = PI/4.d0 * (Ixxfunc(Lm,f) - Ixxfunc(L0,f))

write(*,99) ’Volume = ’, V

write(*,99) ’CGz = ’, cgz+L0, ’ (wrt tangent-ogive base)’

write(*,99) ’CGz = ’, cgz, ’ (wrt secant-ogive base)’

write(*,98) ’Izz = ’, Izz

write(*,99) ’Izz/m = ’, Izz/V, ’ (axis - disks)’

write(*,98) ’Izz = ’, Jzz

write(*,99) ’Izz/m = ’, Jzz/V, ’ (axis - shells)’

write(*,98) ’Ixx = ’, Ixx

write(*,99) ’Ixx/m = ’, Ixx/V,

& ’ (about tangent-ogive base)’

write(*,98) ’Ixx_0 = ’, Ixx - V*(cgz + L0)**2

write(*,99) ’Ixx_0/m = ’, (Ixx/V - (cgz + L0)**2),

& ’ (about secant-ogive CG)’

98 format(a,f8.5,’ ’,$)

99 format(a,f8.5,a)

stop

end
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function Vfunc(h, f)

double precision f, a, h, X2

a = f - 1.d0

X2 = f**2 - h**2

Vfunc = (f**2 + a**2)*h - 1.d0/3.d0 * h**3 -

& a*(h * sqrt(X2) + f**2 * asin(h/f))

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function xbarfunc(h, f)

double precision f, a, h, X2

a = f - 1.d0

X2 = f**2 - h**2

xbarfunc = (f**2 + a**2)/2.d0 * h**2 - 0.25 * h**4 +

& 2.d0/3.d0 * a * X2**1.5d0

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function Izzfuncdisk(h, f)

double precision f, a, h, X2

a = f - 1.d0

X2 = f**2 - h**2

Izzfuncdisk = f**4*h - 2.d0/3.d0*f**2*h**3 + 0.2d0*h**5 +

& 6.d0*f**2*a**2*h - 2.d0*a**2*h**3 + a**4*h -

& a*(h*X2**1.5d0 + 1.5d0*f**2*h*sqrt(X2) +

& 1.5d0*f**4*asin(h/f)) -

& 2.d0*a**3*(h*sqrt(X2) + f**2*asin(h/f))

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function Izzfuncshell(h, f)

double precision f, xi, h, X2, b0, b1, b2, b3

X2 = f**2 - h**2

xi = f - sqrt(X2)

b3 = -1.d0

b2 = +3.d0 + b3 * f * 7.d0/5.d0

b1 = -3.d0 + b2 * f * 5.d0/4.d0

b0 = +1.d0 + b1 * f * 3.d0/3.d0

Izzfuncshell = (f**2*acos(h/f) + (f-xi)*h) * b0 + 2.d0*(

& b1/3.d0 + b2*xi/4.d0 + b3*xi**2/5.d0)*h**3

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function Ixxfunc(h, f)

double precision f, a, h, X2

a = f - 1.d0

X2 = f**2 - h**2

Ixxfunc = f**4*h + 2.d0/3.d0*f**2*h**3 - 0.6d0*h**5 +

& a*(h*X2**1.5d0 - 2.5d0*f**2*h*sqrt(X2) -

& 2.5d0*f**4*asin(h/f))+

& 6.d0*a**2*(f**2*h - 1.d0/9.d0*h**3) -

& 2.d0*a**3*(h*sqrt(X2) + f**2*asin(h/f)) +

& a**4*h
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return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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